Limits on Planetary Companions from Doppler Surveys of Nearby Stars

Andrew Howard \& BJ Fulton Institute for Astronomy, University of Hawaii

Lick Observatory

Keck Observatory

NVB+in

RV / Imaging Synergy

TRENDS Program:
Brown Dwarf discovery \& characterization
e.g. HR 7672 - Crepp+ 2012; Liu+ 2002

RV trend \rightarrow imaging \rightarrow astrometry
\rightarrow mass/spectra

Doppler Measurements Provide:

Target Identification
Target Exclusion (non-detection limits)
Dynamical Masses

Outline

1. Scope of Study
2. Star Lists and Data
3. Automated Planet Search / Completeness
4. Results
5. Idealized Completeness
6. Sensitivity Improvements
7. Recommendations

Scope of Study

Statement of Work

1. Estimate completeness of RV observations for all Exo-C/Exo-S/AFTA stars with Keck/Lick data.
2. Estimate completeness for all Exo-C/Exo-S/AFTA stars without Keck/Lick data, for a nominal Doppler survey.
3. Provide a quantitative recommendations for RV data to maximize science yield.
4. Provide informal estimate of improvements in completeness from continuing RV observations for 10 years with no improvement.

Star Lists and Data Lick and Keck Observatory Star Lists

No Keck/Lick RVs
300 stars With Keck/Lick RVs 76 stars

Excluded from Lick/Keck Search:
1. Southern Hemisphere $\left(\delta \cong-30-40^{\circ}\right)$
2. Early spectral type $(<\sim$ F8 $)$
3. Evolved (subgiants \& giants)
4. Young and active
5. Binaries (sep <2 ")

Star Lists and Data Reasons for Lack of Keck/Lick RVs

Mission	Total Stars	Have RVs ${ }^{\text {b }}$	No RVs			
			Hot ${ }^{\text {c }}$	Southern ${ }^{\text {d }}$	Evolved ${ }^{\text {e }}$	Binary ${ }^{\text {f }}$
Exo-S (S)	127	57	19	24	3	22
Exo-C (C)	249	40	112	43	39	33
AFTA (A)	263	51	125	51	4	38
Total (S+C+A)	376	76	148	71	40	51

Star Lists and Data Lick and Keck Observatory Data

Star Lists and Data Sample RV Data

```
RV Measurements for HD 157214
filename = 157214_rv.csv
# star HD number, 157214
Instrument codes:
    p, Hamilton Spectrograph dewar 16
    l, Hamilton Spectrograph all other dewars
k, pre-upgrade Keck HIRES (on or before August 19 2004)
# j, post-upgrade Keck HIRES (after August 19 2004)
hjd-2440000,rv,rv err,inst
7046.7095,-16.5,9.5299997,p
7224.01265281,-17.964094162,6.6331258,p
7431.6954,-3.33999991417,6.96,p
7578.04018203,-6.54584598541,6.3437233,p
7793.7143,2.95000004768,15.9200001,p
7846.6076,-2.03999996185,12.4399996,p
8113.74,-17.5100002289,11.3299999,p
8375.9723,-0.72000002861,11.3999996,p
8437.8988,5.90000009537,10.7799988,p
8744.93933414,-4.99877548218,13.3051147,p
8745.96034765,-19.8463840485,13.3721724,p
8834.75939096,-2.15345191956,8.669632,p
8846.682,-10.0799999237,9.1400003,p
!
```


RVs provided for 76 Exo-C/Exo-S/AFTA targets with Keck/Lick Spectra

Automated Search Search Algorithm

- 2DKLS periodogram (O'Toole+ 2009)
- Grid search over P and e
- Marginalize over T_{p}, ω, K
- Power, $\mathrm{Z}=\frac{\chi_{B}^{2}-\chi^{2}}{\chi_{B}^{2}}$
- Incorporate measurement errors into fit
- Allow for offsets between datasets, and simultaneously fit for a linear trend
- single, or multi-planet

Automated Search 1\% False Alarm Probability and Caveats

- Empirical false alarm probability (FAP)
- Fit distribution of periodogram peaks to predict the height of a peak that corresponds to a given FAP
- We adopt FAP<1\% as a good detection

Caveats

- All significant signals are detected, whether planetary, astrophysical, or instrumental

Completeness

Injection/Recovery
- Inject synthetic
planets (circular) and
attempt to blindly
recover signals using
automated pipeline
- 5000 injections per
star
- Inject/Recover in
addition to any known
planets

Completeness Sample of Data Files

```
Completeness Contours for HD 157214
filename = 157214_contours.csv
# star HD number, 157214
# Mstar, 0.871, Msun
# Dstar, 14.393, pc
period,a,theta,rec_16,rec_50,rec_ 84
30.061231691,0.180\overline{7}127674\overline{9}1,0.01\overline{2}5559234334,14.7425926001,22.3910787033,34.0076144745
32.5895618052,0.190708479539,0.0132504255257,14.7425926001,22.3910787033,34.0076144745
35.3305396654,0.201257081461,0.0139833424076,15.8060756552,22.3910787033,34.0076144745
38.3020502244,0.212389155093,0.014756798905,15.8060756552,22.3910787033,34.0076144745
41.5234826663,0.224136973832,0.0155730373736,15.8060756552,24.0062988639,36.4608140385
45.0158569226,0.236534596207,0.0164344242001,16.946274946,24.0062988639,36.4608140385
48.8019608268,0.249617964614,0.0173434566623,16.946274946,24.0062988639,36.4608140385
:
```

Completeness contours (16\%, 50\%, 84\%) provided for 76 Exo-C/Exo-S/AFTA targets with Keck/Lick Spectra

Automated Search \& Completeness

Example \#1-HD 157214

Automated Search \& Completeness

 Example \#2 - HD 17925

Automated Search \& Completeness Example \#3 - HD 10700 (т Ceti)

Automated Search \& Completeness

 Example \#4 - HD 201091 (wide binary)

Automated Search \& Completeness Example \#5 - HD 22049 (ع Eridani)

Survey Completeness

Completeness vs. Semi-major axis

Completeness vs. Projected Separation

Completeness for all 76 Stars

Survey Completeness

Completeness Limits vs. Mass

Completeness Limits vs. Semi-major Axis

Completeness for all 76 Stars

Idealized Completeness

$$
\alpha=\text { SNR of a successful detection }
$$

Idealized Completeness

Make Problem Dimensionless

Dimensionless Doppler Amplitude:

$$
\kappa_{50}=\frac{K_{50}}{\sigma_{\mathrm{RV}}}=\frac{\alpha}{\sqrt{N_{\mathrm{obs}}}}
$$

Dimensionless Time:

$$
\tau=P / t_{\mathrm{span}}
$$

$$
K_{50}(\tau)=\frac{\sigma_{\mathrm{RV}} \alpha}{\sqrt{N_{\mathrm{obs}}}} \cdot \sqrt{1+\left(10^{\tau-1.5}\right)^{2}}
$$

$$
\alpha \approx 6 \text { - Injection/recovery Simulations }
$$

Idealized Completeness

$$
\alpha \approx 10-\text { Real Planets on exoplanets.org }
$$

Idealized Completeness
 Prescription for Computing Completeness for Hypothetical Observing Campaign

```
1. Choose Nobs and Tspan for survey
    and M}\mp@subsup{M}{\star}{}\mathrm{ and ORv for stars.
2. Compute K50(P)
3. Convert K50(P) to Msiniso(P)
4. Convert Msini50(P) to Msini50(a)
```

$$
K_{50}(\tau)=\frac{\sigma_{\mathrm{RV}} \alpha}{\sqrt{N_{\mathrm{obs}}}} \cdot \sqrt{1+\left(10^{\tau-1.5}\right)^{2}}
$$

What is σ_{Rv} for Exo-C/Exo-S/AFTA Target Stars?

Idealized Completeness Jitter Estimates - ORV

GK Dwarfs
Southern Hemisphere

Early Spectral Type (hot, < ~F8):

few and broad lines

$$
\sigma_{\mathrm{RV}} \approx 0.16 * V \sin i^{1} .5
$$

Evolved Stars (subgiants, giants):
oscillations

$$
\sigma_{\mathrm{RVV}} \approx V_{\text {osc }}=0.234\left(L_{\star} / M_{\star}\right) \mathrm{m} / \mathrm{s}
$$

Southern Hemishere (GK dwarfs):
$<3 \mathrm{~m} / \mathrm{s}$; limited by spectrometer?

Young Stars:

line distortions; rotational spot modulation

$$
100 \mathrm{~m} / \mathrm{s} \rightarrow<3 \mathrm{~m} / \mathrm{s} \text { (function of logR'нк) }
$$

Binaries:

too hard, not recommended

Idealized Completeness Dedicated RV Campaign

Survey Parameters:
$\sigma_{\text {RV }}$ estimated for each star
$\mathrm{N}_{\mathrm{obs}}=100 \mathrm{RV}$

$$
\begin{aligned}
\mathrm{T}_{\text {span }} & =10 \mathrm{yr} \\
\alpha & =6
\end{aligned}
$$

Sensitivity Gain HD 102365

Current RVs:
$\mathrm{N}_{\text {obs }}=16 \mathrm{RVs}$
$\mathrm{T}_{\text {span }}=6.6 \mathrm{yr}$ $\sigma_{R V}=2.5 \mathrm{~m} / \mathrm{s}$

Continued RVs:
$\mathrm{N}_{\text {obs }}=16+30$ RVs
$\mathrm{T}_{\text {span }}=6.6 \mathrm{yr}+10 \mathrm{yr}$
$\sigma_{R V}=2.5 \mathrm{~m} / \mathrm{s}$

Ideal Survey: $N_{\text {obs }}=16+100$ RVs $\mathrm{T}_{\text {span }}=6.6 \mathrm{yr}+10 \mathrm{yr}$ $\sigma_{R V}=0.5 \mathrm{~m} / \mathrm{s}$ (new RVs)

Sensitivity Gain HD 182572

Current RVs:
$\mathrm{N}_{\text {obs }}=82 \mathrm{RVs}$
$\mathrm{T}_{\text {span }}=17.8 \mathrm{yr}$ $\sigma_{R V}=4.0 \mathrm{~m} / \mathrm{s}$

Continued RVs: $\mathrm{N}_{\text {obs }}=82+30$ RVs
$\mathrm{T}_{\text {span }}=17.8 \mathrm{yr}+10 \mathrm{yr}$
$\sigma_{R V}=3.6 \mathrm{~m} / \mathrm{s}$ (new RVs)

Ideal Survey: $\mathrm{N}_{\text {obs }}=82$ + 100 RVs $\mathrm{T}_{\text {span }}=17.8 \mathrm{yr}+10 \mathrm{yr}$ $\sigma_{R V}=0.5 \mathrm{~m} / \mathrm{s}$ (new RVs)

Recommendations

1. Needed RV measurements should be written into mission requirements. Current Doppler surveys cannot observe (TACs won't support observations of) imaging targets without justification.
2. Invest in a dedicated facility with the time baseline and RV precision to prepare for $10+\mathrm{yr}$ for the imaging missions.
3. Start dedicated RV campaigns to measure the jitter ($\sigma_{\text {RV }}$) of every plausible direct imaging target.

Recommendations (2)

4. We recommend that all target G and K dwarfs (in the North and South) be observed at least 10 times per year with as high of a precision as possible ($\leq 2 \mathrm{~m} / \mathrm{s}$) to detect or place limits on super-Earths and Neptune-mass planets in few AU orbits.
5. For stars showing low enough jitter to enable completeness encompassing giant planets in few AU orbits, we recommend 10 RV epochs per year for 10 yr , with a short-term observing cadence designed to average over photospheric jitter.
