ExoSpinAp

An architecture for space-based exoplanet spectroscopy in the midinfrared

Joseph Green, Case Bradford, Thomas Gautier, Michael Rodgers, Erkin Sidick and Gautam Vasisht

Jet Propulsion Laboratory California Institute of Technology

October 29, 2018

© 2018 California Institute of Technology Government sponsorship acknowledged

10/29/2018 ExEP Technology Colloquium

Concept Objectives

Science

Direct imaging and spectroscopy of Earth-like exo-planets

Engineering

Maintain requirements with current class of technologies

Scalability

Offer compelling science even at designs that may fit into the NASA probe class

Characterization in Mid-IR is Easier

^{10/29/2018} ExEP Technology Colloquium

Warm Planets Wanted

	B1 = 700-840nm	Planet	Stellar Contrast					
	B2 = 7.5-12.5um	Temp (K)	B1	B2	Ratio			
2/JUK Star	Average Earth	300	5.2E-10	7.6E-08	146			
	Albedo: B1=30% B2=30%							
	Sand Planet	300	4.5E-10	1.0E-07	230			
	Albedo: B1=26% B2=4%							
	Water Planet	300	5.2E-11	1.1E-07	2050			
	Albedo: B1=3% B2=1%							
	Tree Planet	300	8.7E-10	1.1E-07	123			
	Albedo: B1=50% B2=1%							
	Snow Planet	265	1.6E-09	5.6E-08	36			
	Albedo: B1=90% B2=4%							

Mid-IR contrast benefits from cooler stars -but- habitable zone worsens TRAPPIST-1 at 2511K has a habitable zone of ~ 0.03 to 0.05 AU

ExoSpinAp Approach

Synthesize the large aperture by...

- Linearize aperture to minimize fabrication requirements
- Segment primary mirror to enable compact deployments or on-orbit assembly
- Use laser metrology trusses to actively stabilize optical architecture
 - 5-10 nanometer tolerance needed

Puts resolution only where its needed...

- Collecting area maximally leveraged for resolution
- Rotate aperture to map out discovery space about star
- Upon full-rotation entire FOV is mapped out with 1 DM

A Strip Aperture Resurgence

1997: Aperture Synthesis w/PMAP

2018: Rotatable Aperture **Coronagraph for Exoplanetary Studies**

TPFC found that with Strip-Apertures

- 40% more collecting area for 8% more PM
- Planet PSF 50% more compact
- 2X Science over the 8x3.5m baseline!

2018: REIF-Sat Cubesat Demo Concept

2017: Revolutionary Astrophysics using an Incoherent synthetic optical aperture

Architecture Overview

Linearized PIAA Approach

Aberration Control & Sensitivity

Observation Concept

Characterization Potential

Atmospheric Retrieval

 Water Vapor, Methane, Ozone, Ammonia, Hydrogen Sulfide, Sulfur Dioxide

- Surface Temperature Emissivity Separation
- Surface Mineralogy
 - Silicates, Oxides, Sulfates and Hydroxides
- Temporal and Rotational Characteristics
 - Scan Repeat every 60-90min
 - Observe spectral evolution as water, land and clouds vary.

16m Aperture with 20nm/channel60 min/scan and 36 second/frameEarth-Sun Analogy at 1 Parsec

Catalog Performance

		P-Thro	ughput			P-Thro	ughput				P-Throughput	
Star	Parsecs	16m	32m	Star	Parsecs	16m	32m		Star	Parsecs	16m	32m
1 Alpha Centauri	1.35	1.00	1.00	41 Gamma Leporis	8.97	0.60	1.00	81 85	Pegasi	12.40	0.03	1.00
2 Alpha Canis Majoris	2.64	1.00	1.00	42 Delta Eridani	9.04	0.56	1.00	82 Rh	io¬π Cancri	12.53	0.03	1.00
3 Epsilon Eridani	3.22	1.00	1.00	43 Beta Comae Berenices	9.16	0.52	1.00	83 HF	3259	12.58	0.03	1.00
4 Alpha Canis Minoris	3.50	1.00	1.00	44 HR4550	9.16	0.52	1.00	84 HF	3483	12.64	0.02	1.00
5 61 Cygni	3.50	1.00	1.00	45 Kappa¬π Ceti	9.16	0.52	1.00	85 La	mbda Aurigae	12.64	0.02	1.00
6 Epsilon Indi	3.63	1.00	1.00	46 Gamma Pavonis	9.22	0.49	1.00	86 HF	3683	12.68	0.02	1.00
7 Tau Ceti	3.65	1.00	1.00	47 HR4523	9.24	0.48	1.00	87 44	Boötis	12.76	0.02	1.00
8 Omicron² Eridani	5.04	1.00	1.00	48 HR4458	9.54	0.37	1.00	88 HF	86518	12.80	0.02	1.00
9 70 Ophiuchi	5.09	1.00	1.00	49 61 Ursae Majoris	9.54	0.37	1.00	89 36	Ursae Majoris	12.85	0.02	1.00
10 Alpha Aquilae	5.14	1.00	1.00	50 12 Ophiuchi	9.78	0.30	1.00	90 HF	R6094	12.87	0.02	1.00
11 Sigma Draconis	5.77	1.00	1.00	51 HR511	9.98	0.25	1.00	91 HF	34587	12.91	0.02	1.00
12 HR5568	5.91	1.00	1.00	52 HR5256	10.11	0.22	1.00	92 Al	pha Aurigae	12.94	0.02	1.00
13 Eta Cassiopeiae	5.95	1.00	1.00	53 Alpha Mensae	10.15	0.21	1.00	93 HF	36998	12.98	0.02	1.00
14 36 Ophiuchi	5.98	1.00	1.00	54 Beta Geminorum	10.34	0.18	1.00	94 58	Eridani	13.32	0.01	1.00
15 HR7703	6.05	1.00	1.00	55 HR857	10.38	0.17	1.00	95 Up	silon Andromedae	13.47	0.01	1.00
16 82 Eridani	6.06	1.00	1.00	56 lota Persei	10.53	0.15		·····	E' LI D. (
17 Delta Pavonis	6.11	1.00	1.00	57 HR9038	10.79	0.12	0.5		Field Performa	ance of PIAA		
18 HR8832	6.52	1.00	1.00	58 Zeta Herculis	10.80	0.12	0.5					— 16m
19 Xi Boötis	6.70	1.00	1.00	59 Delta Trianguli	10.85	0.11	0.45					- 32m
20 HR753	7.21	0.99	1.00	60 Beta Virginis	10.90	0.11	0.45				\checkmark	
21 HR6426	7.24	0.99	1.00	61 HR637	10.91	0.10	0.4		\sim			
22 HR222	7.46	0.98	1.00	62 Beta Leonis	11.09	0.09	0.4					
23 107 Piscium	7.47	0.98	1.00	63 HR6806	11.10	0.09	⊆ 0.35 -···		/			
24 Beta Hydri	7.47	0.98	1.00	64 54 Piscium	11.11	0.09	tio					
25 Mu Cassiopeiae	7.55	0.97	1.00	65 Gamma Serpentis	11.12	0.09	<u>е</u> ₀₃		/			
26 HR8721	7.64	0.97	1.00	66 11 Leonis Minoris	11.18	0.08	e e					
27 Alpha Piscis Austrini	7.69	0.96	1.00	67 Gamma Leporis	11.53	0.06	ပိ _{0.25}					
28 Alpha Lyrae	7.76	0.95	1.00	68 Delta Eridani	11.63	0.06	L L		-100	-100		200
29 Pi³ Orionis	8.03	0.91	1.00	69 Beta Comae Berenices	11.73	0.05	0.2 - · · ·					90
30 Chi Draconis	8.06	0.91	1.00	70 HR4551	11.84	0.05	ne		(i) -50 20	-50 -50		
31 p Eridani	8.15	0.89	1.00	71 Kappa¬π Ceti	11.94	0.04	0.15 - ···					N
32 Xi Ursae Majoris	8.34	0.84	1.00	72 Gamma Pavonis	12.04	0.04			eutation 2 λ/Γ	ວ ີ 🛃 🕺 🖉		16 2/0
33 Beta Canum Venaticorum	8.37	0.83	1.00	73 HR4393	12.14	0.04	0.1 - · · ·					
34 Mu Herculis	8.40	0.82	1.00	74 HR4328	12.24	0.03			tied so.	50 50		
35 61 Virginis	8.53	0.78	1.00	75 62 Ursae Majoris	12.34	0.03	0.05 - · · ·					
36 Zeta Tucanae	8.59	0.75	1.00	76 13 Ophiuchi	12.45	0.03				100		90°
37 Chi¬π Orionis	8.66	0.72	1.00	77 HR10001	12.55	0.03			100	150	000	
38 HR6416	8.79	0.67	1.00	78 HR14746	12.65	0.02	0	50	ν 100 Field Δnat	150 e (mas)	200	250
39 HR1614	8.81	0.66	1.00	79 Alpha Mensae	12.75	0.02	1.00	119 i Ps	i Capricorni	14.6/	0.01	0.98
40 HR7722	8.82	0.66	1.00	80 Beta Geminorum	12.85	0.02	1.00	120 Al	pha Corvi	14.77	0.01	0.98

1-AU Planets Characterized out to 30-60 Light-Years

Remarks

Mid-IR is best place for exo-planet characterization

- Rich in spectral features
- Good intensity and contrast

- Mid-IR permits practical designs over visible approaches
 - I000x Contrast Relaxation nano –not- pico meters
 - 30x Time Relaxation

Linearize Telescope and Starlight Suppression
Maximize Performance with Minimum Hardware

Key Enabling Technologies

Telescope

- 1x1m Segment Fabrication (15-30 nm class)
- Segment/SM RB actuations (mm 10nm)
- Segment Control (10-20nm class)
- Deployable/ Assemble (meters to < mm)</p>
- Laser Metrology Trusses

Thermal Control

Conformal Deployable Shade (maintain OTA at ~55K)

Pointing and Wavefront Control

- Pointing-Mirror (0.1 urad rms in hi-res axis for 32m concept)
- High Density Deformable Mirror

Starlight Suppression and Control

Linearized PIAA Optics for 10µm

JWST Size / Quality Demonstrated by JWST Demonstrated by JWST Follows aspects of OpTIIX concept Demonstrated bySIM and other Testbeds

HCIT, Starfire, Palomar (but cold...)

Potential for relaxed fabrication specs

8m Probe Concept

