The 2019 Exoplanet Exploration Program Technology List

Compiled by: Dr. Brendan Crill, Deputy Program Chief Technologist, NASA Exoplanet Exploration Program, Jet Propulsion Laboratory, California Institute of Technology

No major updates or reprioritization occurred in 2018; Minor updates relative to the 2018 ExEP Technology List indicated in blue font.

© 2019 California Institute of Technology. Government sponsorship acknowledged.

п	Tachnalam	Technology	Technology Description	Current Derformance	Needed Performance
שו	rechnology	Gap	Technology Description	Current Performance	Needed Performance
CG-2	Coronagraph Demo's and Modeling	Coronagraph Contrast	Coronagraph optics and architecture that suppress diffracted starlight by a factor of < 10 ⁻¹⁰ at visible and infrared wavelengths	Lab: 6×10^{-10} raw contrast at10% bandwidth across anglesof 3-15 λ/D demonstratedwith a linear mask and anunobscured pupil in a staticvacuum lab environment(Hybrid Lyot)< 1.6x10 ⁻⁹ raw contrast at10% bandwidth across anglesof 3-9 λ/D demonstrated witha circularly-symmetric maskand obscured pupil in a staticvacuum lab environment(WFIRST)Flight:10 λ/D (HST)	Coronagraph masks and optics capable of creating circularly symmetric dark regions in the focal plane enabling raw contrasts $\leq 10^{-10}$, with minimal contribution from polarization aberration, IWA $\leq 3 \lambda/D$, throughput $\geq 10\%$, and bandwidth $\geq 10\%$ on obscured and segmented pupils in a simulated dynamic vacuum environment.

ID	Technology	Technology Gap	Technology Description	Current Performance	Needed Performance
S-1	Controlling Scattered Sunlight	Starlight Suppression	Limit edge-scattered sunlight and diffracted starlight with optical petal edges that also handle stowed bending strain.	Edges manufactured with machining and electrical discharge machining do not meet scatter requirements; etched amorphous metal edges meet scatter specs integrated in-plane shape tolerance is to be demonstrated.	Integrated petal optical edges maintaining precision in-plane shape requirements after deployment trials and limit solar glint contributing < 10 ⁻¹⁰ contrast at petal edges.
S-2	Starlight Suppression and Model Validation	Starlight Suppression	Experimentally validate at flight-like Fresnel numbers the equations that predict the contrasts achievable with a starshade.	Validated optical model with demonstrated 10^{-6} suppression at white light, 58 cm mask, and Fresnel number F (at the starshade tips) = 210; 6×10^{-6} suppression demonstrated at F = 15; 4.6×10^{-8} suppression demonstrated at F~27	Experimentally validated models with total starlight suppression $\leq 10^{-8}$ in scaled flight-like geometry, with F between 5 and 40 across a broadband optical bandpass. Validated models are traceable to 10^{-10} contrast system performance in space.
S-3	Lateral Formation Sensing	Starshade Contrast Stability	Demonstrate lateral formation flying sensing accuracy consistent with keeping telescope in starshade's dark shadow.	Sub-scale lab demonstration showing ability to center telescope within ± 1 m of the center of the starshade shadow. <u>The Starshade</u> <u>Contrast Stability Technology</u> <u>Gap is now closed.</u>	Demonstrate sensing lateral errors ≤ 0.24 m 3σ accuracy at the flight signal-to-noise ratio at scaled flight separations. Demonstrate control algorithms with scaled lateral control error $\leq 1m$ radius.

		Technology			
ID	Technology	Gap	Technology Description	Current Performance	Needed Performance
S-5	Petal Positioning Accuracy and Opaque Structure	Deployment Accuracy and Shape Stability	Demonstrate that a starshade can be autonomously deployed to within its budgeted tolerances after exposure to relevant environments.	Petal deployment tolerance (≤ 1 mm) verified with low fidelity 12 m prototype and no optical shield; no environmental testing (Exo-S design).	Deployment tolerances demonstrated to ≤ 1 mm (in- plane envelope) with flight- like, minimum half-scale structure, with petal optical edge interfaces, that is optically opaque when deployed, and includes interfaces to launch restraint. Verify the structure will meet shape stability (petal edge position) after exposure to relevant environments throughout mission lifetime.
S-4	Petal Shape and Stability	Deployment Accuracy and Shape Stability	Demonstrate a high- fidelity, flight-like starshade petal meets petal shape tolerances after exposure to relevant environments.	Manufacturing tolerance (≤100 µm) verified with low fidelity 6m prototype and no environmental tests. Petal deployment tests conducted but on prototype petals to demonstrate rib actuation; no shape measurements, no long- duration stowage tests.	Deployment tolerances demonstrated to $\leq 100 \ \mu m$ (in- plane tolerance profile for a 7 m petal on the 34m-diameter Exo-S design; tolerances scale roughly linearly with starshade diameter) with flight-like, minimum half-scale petal fabricated and maintains shape throughout mission lifetime with exposure to relevant environments and is optically opaque.

		Technology			
ID	Technology	Gap	Technology Description	Current Performance	Needed Performance
CG-3	Deformable Mirrors	Coronagraph Contrast	Flight-qualified large- format deformable	Lab: Electrostrictive 64×64 actuator DMs have been	4 m primary mirror: ≥ 96×96 actuators
			mirrors and theirdemonstrated to meet ≤ 10 electronicscontrasts and $< 10^{-10}$ stabilitin a vacuum environment a	demonstrated to meet $\leq 10^{-9}$ contrasts and $< 10^{-10}$ stability in a vacuum environment and	10 m primary mirror: ≥ 128×128 actuators
				10% bandwidth; 48×48 actuator DM passed random vibe testing	Enable raw contrasts of $\leq 10^{-9}$ at ~20% bandwidth and IWA $\leq 3 $ λ /D
				<u>Flight:</u> No SOA	Flight-qualified device and drive electronics (radiation hardened, environmentally tested, life-cycled including connectors and cables)
					Mirror stability maintains 10 ⁻¹⁰ contrast for observation time

		Technology						
ID	Technology	Gap	Technology Description	Current Performance	Needed Performance			
CG-1	Large Aperture	UVOIR Angular	Angular Large monolith and multi- lution segmented mirrors that meet tight surface figure error, coating uniformity, and thermal control requirements at visible wavelengths	Flight Monolith:	Aperture: 4–15 m; SFE < 10 nm			
	Primary Mirrors	Resolution		3.5-m sintered SiC with < 3 μm SFE (Herschel)	rms (wavelength coverage 400–2500 nm)			
				and thermal control requirements at visible	and thermal control requirements at visible	and thermal control requirements at visible	2.4 m ULE with ~10 nm SFE (HST)	Wavefront stability better than 10 pm rms per wavefront control time step.
				Depth: Waterjet cutting is TRL 9 to 14", but TRL 3 to > 18". Fused core is TRL 3; slumped fused core is is TRL 3 (AMTD).	Segmented apertures leverage 6 DOF or higher control authority meter-class segments for wavefront control.			
				Segmented (no flight SOA): 6.5 m Be with 25 nm SFE (JWST)	Environmentally tested			
				Non-NASA: 6 DOF, 1-m class SiC and ULE, < 20 nm SFE, and < 5 nm wavefront stability over 4 hr with thermal control				

ID	Technology	Technology Gap	Technology Description	Current Performance	Needed Performance
CG-6	Mirror Corona Segment Contrast Phasing Sensing & Control	ror Coronagraph Seg ent Contrast Stability lar ing rec ng & and rol con the act	Segmented or monolith large aperture mirrors require segment phasing and rigid-body sensing and	6 nm rms rigid body positioning error and 49 nm rms stability (JWST error budget)	Systems-level considerations to be evaluated but expect will require WFE stability less than 10 pm rms sensitivity and
			control of the segments or the surface figure to achieve tight static and dynamic wavefront errors.	SIM and non-NASA: nm accuracy and stability using laser metrology	control over periods of tens of minutes
				Capacitive gap sensors demonstrated at 10 pm.	
				No flight SOA; ground-based (Keck) achieved 6 nm positioning error in operations	
CG-7	TelescopeCoronagraphVibrationContrast StabilitSense/Controlor Reduction	Coronagraph Contrast Stability	Isolation, reduction, and/or damping of spacecraft and payload vibrational disturbances	80 dB attenuation at frequencies > 40 Hz (JWST passive isolation)	Vibration isolation or reduction of vibration disturbance sources to a level
		r Reduction vibr		Disturbance-Free Payload demonstrated at TRL 5 for JWST with 70 dB attenuation at "high frequencies" with 6- DOF low-order active pointing.	that enables < 1 nm wavefront error stability.
				GAIA cold gas microthrusters or LISA pathfinder colloidal microthrusters for fine pointing can reduce disturbance environment.	

		Technology			
ID	Technology	Gap	Technology Description	Current Performance	Needed Performance
CG-9	Ultra-Low Noise Near- Infrared Detectors	NIR Detection Sensitivity	Near-infrared wavelength (900 nm to 2.5 μm), extremely low noise detectors for exo-Earth spectral characterization with Integral Field Spectrographs	Lab: HgCdTe photodiode arrays have read noise ≾ 2 e- rms with multiple nondestructive reads; 2k×2k format; dark current < 0.001 e-/s/pix; very radiation tolerant (JWST)	Read noise << 1 e- rms, dark current noise < 0.001 e-/pix/s, in a space radiation environment over mission lifetime ≥ 2k×2k format
				HgCdTe APDs have dark current ~10–20 e-/s/pix, RN << 1 e- rms, and < 1k×1k format	
				Sub-Kelvin photon-counting detectors (KID,TES): 0 read noise/dark current; radiation tolerance is unknown; <1k×1k format	
				<u>Flight</u> : HST WFC3/IR HgCdTe dark current 0.05 e-/px/s, 12 e- read noise, 1k×1k format	
CG-5	Wavefront Sensing and Control	Coronagraph Contrast Stability	Sensing and control of line-of-sight jitter and low- order wavefront drift	Lab: < 0.5 mas rms per axis LOS residual error demonstrated in lab with a fast-steering mirror attenuating a 14 mas LOS jitter and reaction wheel inputs; ~12 pm rms sensitivity of focus (WFIRST) Higher low-order modes sensed to 10–100 nm WFE rms on ground-based telescopes	Sufficient fast line-of-sight jitter (< 0.5 mas rms residual) and slow thermally-induced WFE sensing and control (≤ 10 pm rms sensitivity) to maintain closed-loop < 10 ⁻¹⁰ raw contrast with an obscured/segmented pupil and simulated dynamic environment
				<u>Flight:</u> No SOA	

		Technology			
ID	Technology	Gap	Technology Description	Current Performance	Needed Performance
CG-8	Ultra-Low Noise Visible Detectors	Vis Detection Sensitivity	Low-noise visible detectors for faint exoplanet characterization with an Integral Field Spectrograph	Lab: 1k×1k silicon EMCCD detectors provide dark current of 7×10 ⁻⁴ e ⁻ /px/sec; CIC of 0.01 e ⁻ /px/frame; zero effective read noise (in photon counting mode) after irradiation when cooled to 165.15K (WFIRST); 4k×4k EMCCD fabricated but still under development	Effective read noise < 0.1 e- rms; CIC < 3×10 ⁻³ e- /px/fram; dark current < 10 ⁻⁴ e-/px/sec tolerant to a space radiation environment over mission lifetime ≥ 2k×2k format
				<u>Flight:</u> HST WFC3/UVIS CCD 3.1 e⁻ read noise, dark current 2×10⁻³, format 2k×2k	
M-4	Ultra-Stable Mid-IR Detectors	Ultra-StableTransitMid-IRSpectroscopy ofDetectorsExo-Earths	Ultrastable detectors for the mid-infrared band (7 - 20 microns) enabling	Lab: JWST/MIRI is expected to achieve 10-100 ppm transit stability	< 5 ppm stability for 5 hours
			transit spectroscopy of rocky exoplanets in the Habitable Zone of M- dwarfs.	<u>Flight</u> : Spitzer IRAC Si:As detector data have demonstrated about 60 ppm precision in transit observations of several hours	
M-3	Astrometry	Tangential Stellar Motion	Measure the mass and orbital parameters of Earth-like planets by performing astrometry of FGK stars to the sub- micro-arcsecond level.	<u>Flight:</u> GAIA typical uncertainty in astrometry for DR1 catalog is 300 microarcseconds; goal for V band magnitude 7-12 stars is 10 microarcseconds.	< 0.1 microarcsecond uncertainty enables survey of nearby FGK stars. Astrophysical limits (such as variable stellar surface structure) need to be well- understood. Telescope wavefront error stability and detector thermal and mechanical stability must enable sub-microarcsecond astrometry measurements.

ID	Technology	Technology Gap	Technology Description	Current Performance	Needed Performance
CG-4	Data Post- Processing Algorithms and Techniques	Coronagraph Contrast	Data post-processing techniques to uncover faint exoplanet signals from residual speckle noise at the focal-plane detector	Few 100 × speckle suppression has been achieved by HST and by ground-based AO telescopes in the NIR and in contrast regimes of 10 ⁻⁴ to 10 ⁻⁵ , dominated by phase errors.	A 10-fold contrast improvement in the visible from 10 ⁻⁹ raw contrast where amplitude errors are expected to be important (or a demonstration of the fundamental limits of post- processing)
CG- 10	Mirror Coatings for UV/NIR/Vis	Mirror Coronagraph Mi Coatings for Contrast ena UV/NIR/Vis wa nm ena per	aph Mirror coatings that enable high reflectivity to wavelengths as short as 90 nm; coating uniformity enables 10 ⁻¹⁰ coronagraph performance	Al coating with combination of MgF ₂ , LiF, and/or AlF ₃ overcoat: 90-120 nm: < 50% reflectivity 120-300 nm: 85% reflectivity 300 nm-2 μm: > 90% reflectivity	A mirror coating that that achieves 90-120 nm: > 70% reflectivity 120-300 nm: > 90% reflectivity 300 nm-2 μm: > 90% reflectivity
				Polarization differences between orthogonal polarization states, uniformity, and durability of coatings on large optics is unknown.	Polarization phase and amplitude difference < 1% between orthogonal polarization states. Uniformity enables 10 ⁻¹⁰ coronagraph contrast
				<u>Flight</u> : HST uses MgF ₂ ; 85% reflectivity $\lambda > 120$ nm; 20% reflectivity $\lambda < 120$ nm	performance

		Technology			
ID	Technology	Gap	Technology Description	Current Performance	Needed Performance
M-2	Laser Frequency Combs	Radial Stellar Motion	Laser Frequency Combs (LFCs) are precise calibration sources for extreme-precision radial velocity measurement.	Lab: Electro-optic-modulation frequency combs demonstrated on ground- based observatories with needed mode spacing, need miniaturization and power reduction.	Space-based Laser Frequency Combs to calibrate high resolution, fiber-fed spectrographs for radial velocity precision better than 10 cm/s. Desired parameters are:
				Non-NASA work is advancing miniaturization.	 mode spacing of 5-10 GHz bandwidth span 380 nm to
				Flight: Fiber laser-based	2400 nm
				optical frequency combs demonstrated on sounding	• Allen deviation < 10 ⁻¹⁰
				rocket (TEXUS 51 4/15 and TEXUS 53 1/16) w/~ few hundred MHz mode spacing. System mass is > 10 kg.	• Low SWaP
CG- 13	Ultra Low Noise Mid-IR detectors	Mid-IR detection sensitivity	Low noise and detectors for the mid-infrared band (7 - 20 microns) enabling exoplanet direct imaging.	<u>Flight:</u> JWST/MIRI	< 5 ppm stability for 5 hr; noise requirements TBD, likely to be 10 x better than JWST/MIRI
M-1	Extreme Precision Ground-based Radial Velocity	Radial Stellar Motion	Ground-based radial velocity instrumentation capable of measuring the mass of candidate exo- Earths in the habitable zone and to maximize efficiency of space telescope surveys.	Single measurement precision: 80 cm/s HARPS instrument; NN-EXPLORE's NEID (WYNN observatory) in development: goal 27 cm/s	Signal from exo-Earths is 10 cm/s; Need to reduce systematic errors to 1 cm/s on multi-year timescales; statistical uncertainties of 1 cm/s on monthly timescales for late F, G, and early K stars

		Technology			
ID	Technology	Gap	Technology Description	Current Performance	Needed Performance
CG- 14	Mid-IR Large Aperture Telescopes	Mid-IR Angular Resolution	Cryogenic (4K), large- aperture (> 6m) telescopes to achieve high angular resolution needed to direct-image cool exoplanets in wide orbits (> 5 AU)	JWST Be mirror segments may meet requirements now, so TRL 5 with an extremely expensive technology; TRL 3 exists for other materials like SiC. Cryogenic low-dissipation actuators exist at TRL 3-5.	Develop a feasible and affordable approach to producing a 6-m-class telescope with sufficiently high specific stiffness, strength, and low areal density to be launched; while maintaining compatibility with cryogenic cooling and FIR surface quality/figure of ~1µm rms. Material property measurements at cryogenic temperatures for structures and optics such as damping, emissivity, thermal conductivity, etc.
CG- 15	Mid-IR Coronagraph Optics and Architecture	Mid-IR Coronagraph Contrast	Coronagraph optics and architecture that suppress diffracted starlight by a factor of < 10 ⁻⁶ over a broad mid-IR band (7-30 microns)	The current state of the art for mid-infrared coronagraphs are the three four-quadrant phase masks of JWST-MIRI. These provide narrow-band imaging with contrasts up to 10 ⁻⁴ in three narrow bands from 10.65- 15.5 micron with inner working angles of 0.33-0.49". The MIRI coronagraphs do not offer spectral dispersion.	Contrast should be 10 ⁻⁶ at IWA 3 λ /D at 10 μ m.
CG- 16	Cryogenic Deformable Mirrors	Mid-IR Coronagraph Contrast	Flight-qualified deformable mirrors operable at cryogenic temperatures, and their drive electronics.	Lab: MEMS DM with 32x32 actuator count operated at 5k demonstrating 2.6 nm rms repeatability	Requirements on actuator stroke, stroke resolution, heat dissipation, and actuator count are TBD but must be operable at cryogenic temperatures.

ID	Technology	Technology Gap	Technology Description	Current Performance	Needed Performance
CG-	Ultra-Low	UV Detection	Low-noise ultraviolet (200-	Lab: Micro-channel Plates	Read Noise: 0 e-
12 Noise UV Sensitiv Detectors	Sensitivity	400 nm) detectors to characterize exoplanets.	(MCP): 0 read noise, $\lambda \sim 90 - 300$ nm, spurious count rate 0.05 - 0.5 counts/cm ² /s; QE	Dark Current: 0 e- /resolution/s	
				20-45%; resolution element size 20 mm. EMCCD: 0 read	Spurious Count Rate: < 0.05 counts/cm ² /s
				noise, dark current > 0.005 e- /res/hr; QE 30-50%; resol. el.	QE: 75%
				size 20 μm	Resolution size \leq 10 μ m
				<u>Flight</u> : HST HRC: In relevant UV band (250 nm): QE 33%, read noise 4.7 e-, dark current 5.8×10 ⁻³ , 1024x1024	Tolerant to space radiation environment over mission lifetime.