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Predicting Exoplanet Yield: Summed Completeness

Expected number of exoplanet detections for n target stars:

E[detections| = nz k Z Hpi H(l —pi) = ani
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Planet Occurrence Rate—/ Combinations of {i};_; Probability of Planet
Taken k at a Time Detection at ith Target
e Pro: (Relatively) Straightforward to compute @ Pro and Con: Can get a result
without actually scheduling

@ Con: Other metrics require separate calculations
observations

See: Brown, “Single-visit photometric and obscurational completeness”, 2005; Garrett and Savransky, “Analytical Formulation of the
Single-visit Completeness Joint Probability Density Function”, 2016; Garrett, Savransky, and Macintosh, “A Simple Depth-of-Search
Metric for Exoplanet Imaging Surveys”, 2017
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Predicting Exoplanet Yield: Monte Carlo Mission Simulation
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e Pro: Can extract effectively any metric
of performance with errorbars

e Con: Computationally costly
See: Savransky, Kasdin, and Cady, “Analyzing the designs of planet finding missions
“WFIRST-AFTA coronagraph science yield modeling with EXOSIMS”, 2015

@ Pro and Con: Requires a mission
schedule

7, 2010; Savransky and Garrett,



EXOSIMS: A Framework for Monte Carlo M
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https://exosims.readthedocs.io/en/latest/intro.html#framework
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Maximizing Code Re-Use Through Inheritance

Module 1 Prototype

+attribute 1 — Module 2 Prototype

e Module 1 Implementation 1 | ...-----="~"""7 77T >

+Module 1 Instance

conettis Upuiss) s i) \Inheritance4> +attribute 3
+method 2(inputs1) : outputs1 Module 1 Implementation 2
+method 3(inputs3) : outputs3

—
Inheritance{= +attribute 4

+method 1(inputs1) : outputs1

@ Module Prototypes provide all attributes and methods required by all other
prototypes and set input/output specification for all required methods

e Module Implementations may add additional attributes/methods and/or overload
existing methods (so long as input/output remains unchanged)

e Internally, module objects are referred to only by their module type (e.g. any
implementation of TargetList is called as TargetList)

https://exosims.readthedocs.io/en/latest/exosimsmods.html#module-inheritance-and-initialization
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An Inheritance Example

PlanetPhysicalModel

+calc_albedo_from_sma(Quantity ndarray sma) : ndarray
+calc_radius_from_mass(Quantity ndarray mass) : ndarray
+calc_mass_from_radius(Quantity ndarray radius) : ndarray
+calc_Phi(Quantity ndarray beta) : ndarray
+calc_Teff(ndarray L, Quantity ndarray d, ndarray p) : ndarray

Inheritance

FortneyMarleyCahoyMix1

+calc_albedo_from_sma(Quantity ndarray sma) : ndarray
+calc_radius_from_mass(Quantity ndarray mass) : ndarray
+calc_mass_from_radius(Quantity ndarray radius) : ndarray

Inheritance

Forecaster

+calc_radius_from_mass(Quantity ndarray mass) : ndarray
+calc_mass_from_radius(Quantity ndarray radius) : ndarray
+piece_linear() : ..

When Forecaster is being used as the planet physical
model:

@ PlanetPhysicalModel.calc_Phi calls the
Prototype method

@ PlanetPhysicalModel.calc_albedo_from_sma
calls the method from FortneyMarleyCahoyMix1

@ PlanetPhysicalModel.calc_mass_from_radius
calls the method from Forecaster
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(Some) EXOSIMS Implementations
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Optical System Encoding

starlightSuppressionSystem

sciencelnstrument
string name

Quantity | deltalam :“we QE\
uantity | pixelSize . . 3

ot o il e An optical system is defined as collection of:
Quantity | FoV .

oy o R e Science Instruments

Quantity | idark

it e e Starlight Suppression Systems

float sread

e e ity [ o Observing Modes
float Rs
callable | core_mean_intensity . . .
Ty oot ol @ Science instruments can be imagers or spectrometers
+ |
J e Starlight suppression systems can be (internal)
\
coronagraphs or (external) occulters (starshades)
observingMode . . . .
@ An observing mode combines a starlight suppression
e e system with a science instrument and can override
P R certain parameters (e.g. wavelength range and
bool occulter IWA/OWA)
Quantity WA
Quantity OWA
SpectralElement | bandpass




EXOSIMS
oce

Optical System Initialization and Inheritance

self.populate_scienceInstruments

self.populate_starlighSuppressionSystems

self.populate_observingModes

l -

[

I

self.populate_scienceInstruments_extra

self.populate_starlighSuppressionSystems_extra

self.populate_observingModes_extra

e All *_extra methods are empty in the prototype optical system

e The prototype populates all science instrument attributes required to describe a

conventional detector

e Implementation Nemati overloads method populate_sciencelnstruments_extra to
add photon-counting detector-specific attributes
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Traveling Spacecraft Problem

Visit graph for 3 target pool. Adjacency matrices at two different times

The cost of transitioning from target ¢ to target j is:

Z gy, e my: Cost/benefit metrics/heuristics
A — k o aj: Weights
Z] - ] ] . . . .
(1 — Bieepout> (1—4;5) ° Bieepout: 1 if target j is in keepout, else 0

See: Savransky, Kasdin, and Cady, “Analyzing the designs of planet finding missions”, 2010
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Costs and Benefits

@ Penalize for long slews (if using starshade)—angle between look vectors is an
acceptable heuristic, but actual fuel/time costs are better

e Reward for accumulating completeness

e Penalize long integration times (minimize known astrophysical noise sources)

e Reward for repeat observations of prior detections (up to some maximum, penalize
after)

e Reward observations of hard to schedule targets (large fraction of time spent in
keepout)

o Penalize targets likely to give more false positives

cos™ (u; - uj) -
Aij = |:CL1 Binst + a200mpj —aze“” " Bynyis + a4Bvis(1 - Brevis)

2T
N. T:
- a5Brevis <]V]> (N] < Nreq) - GGF;' /(1 - Bk:eepout)
req J

See: Savransky, Kasdin, and Cady, “Analyzing the designs of planet finding missions”, 2010
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Keepout Constraints
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Targets are observable in white regions of the graph. The sun keepout may be due to
direct sun avoidance, starshade glint avoidance, or solar panel pointing restrictions.



Scheduling
[e]e]e] lelelele]

Local Zodiacal Light Minimization
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From Keithly et al., “Optimal scheduling of exoplanet direct imaging single-visit observations of a blind search survey”, 2020 based
on Leinert et al., “The 1997 reference of diffuse night sky brightness”, 1998.
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Starshades Make Everything Harder

Target Starj ,/
Target Star i <>
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Required slew Awv for impulsive burn model

See: Soto et al., “Parameterizing the Search Space of Starshade Fuel Costs for Optimal Observation Schedules”, 2019
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Continuous Thrust Slews Make Things Fven Harder

See: Kulik, Clark, and Savransky, “State Transition Tensors for Continuous-Thrust Control of Three-Body Relative Motion”, 2023
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Stationkeeping Requires Additional Optimization
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Starshade stationkeeping schematic. targets on poles and equator of unit sphere
o axis aligned with lateral differential about the observatory
acceleration.

See: Flinois et al., “Starshade formation flying II: formation control”, 2020; Soto, Savransky, and Morgan, “Analytical model for

starshade formation flying with applications to exoplanet direct imaging observation scheduling”, 2021; Kulik, Soto, and Savransky,
“Minimal differential lateral acceleration configurations for starshade stationkeeping in exoplanet direct imaging”, 2022
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Accommodating Various Mission Scenarios
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Schedule Validation via Random Walks
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Comparison of yield from randomized visit order (blue), choosing the next highest

completeness target (green) and automated scheduler (red).

See: Savransky, Kasdin, and Cady, “Analyzing the designs of planet finding missions”, 2010
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Validation via Multiple Planet Populations

Joint Probability Density: Universe (Left) Detected Planets (Right)
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Figure by D. Keithly
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Validation via Multiple Planet Populations

Joint Probability Density: Universe (Left) Detected Planets (Right)
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Validation via Graph Expansion with Pruning

o We can enumerate more schedule
options by pruning equivalent branches

e Equivalency is determined by ignoring
target order and tracking accumulated
completeness from the same set of
targets

e For example: red = blue iff
c1+catcegt+cs=c1+cg+cr+cg

@ Round completeness to the second
decimal place

e Can also discard all ‘equivalent’ paths
every k layers

See: Savransky et al., “Quantifying the impacts of schedulability on science yield of exoplanet imaging missions”, 2023
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Pruning in Action
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15 Targets over 2 weeks: 175 nodes, Branchlng Factor ~ 3

See: Savransky et al., “Quantifying the impacts of schedulability on science yield of exoplanet imaging missions”, 2023
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Pruning in Action
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15 Targets over 2 weeks: 54 nodes, Branching Factor ~ 2

See: Savransky et al., “Quantifying the impacts of schedulability on science yield of exoplanet imaging missions”, 2023
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Pruning in Action
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15 Targets over 2 weeks, iterative pruning depth = 2: 11 nodes

See: Savransky et al., “Quantifying the impacts of schedulability on science yield of exoplanet imaging missions”, 2023



Pruning in Action
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15 Targets over 2 weeks, iterative pruning depth = 3: 21 nodes

See: Savransky et al., “Quantifying the impacts of schedulability on science yield of exoplanet imaging missions”, 2023
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Ensuring Reproducibility

e EXOSIMS generates a complete record of all inputs and all defaults filled at runtime
e Intermediate products are cached with filenames based on hashes of the full inputs

{"obscurFac": 0.1,
"shapeFac": 0.7853981633974483,
"pupilDiam": 4.0,
"intCutoff": 50.0,
"stabilityFact": 1.0,
"use_char_minintTime": False,
"texp_flag": False,

"sciencelnstruments":
[{"name": "imager",
"QE": 0.9,
"optics": 0.5,
"FoV": 10.0,
"pixelNumber": 1000,
"pixelSize": 1e-05,

"pixelScale": 0.02,
"idark": 0.0001,
"CIC": 0.001,

"sread": le-06,
"texp": 100.0,
"Rs": 1.0,

"lenslSamp": 1.0,

"Nlensl": 5.0,

"focal": 103.13240312354819,
"fnumber": 25.783100780887047}],

"starlightSuppressionSystems":

[{"name": "coronagraph",
"occ_trans": 0.2,
"core_thruput": 0.1,
"core_contrast": 1le-10,
"core_mean_intensity": 1.0e-11,
"core_area": 0.0,

"optics": 1.0, o
"occulter": False,

"lam": 500.0,

"deltalam": 100.0,

"BW": 0.2,

"koAngles_Sun": array([ 0., 180.1),
"koAngles_Earth": array([ 0., 180.1),
"koAngles_Moon": array([ 0., 180.1),
"koAngles_Small": array([ 0., 180.1),
"core_platescale": None,
"contrast_floor": None,
"IWA": 0.1,
"OWA": inf,
"ohTime": 1.0}],
"observingModes" :
"instName": "imager",
"systName": "coronagraph"}1}

[{"detectionMode": True,

e Instantiating an optical system with

no inputs (all defaults) generates
(minimally) this set of inputs.

Cached products based on this
optical system will have a filename
including the string
9¢c437d0035943d38e9abce629bf9bcb1,
which is the full MD5 hash of this

dictionary.
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Ensuring Reproducibility and Avoiding Regressions

Reproducibility is a key challenge in Monte Carlo

but remember that pseudorandom is not truly random

e Random number generator seeds are saved along with simulation outputs, and can be
used to replicate random draw sequences

e EXOSIMS allows for the dumping/loading of all randomly generated values when
creating synthetic universes

Continuous Integration is required for actively developed projects

EXOSIMS uses both unit tests (run in CI) and end-to-end tests (run offline) to avoid
regressions




Conclusions

Some Final Thoughts

e Monte Carlo Mission Simulation is an enormously powerful approach to yield
modeling, but requires equally enormous validation efforts

e We are making progress on answering the extent to which differences between
summed completeness and MCMS yields are due to real constraints or scheduling
inefficiencies, but more remains to be done

e Implementation of an MCMS framework such as EXOSIMS produces numerous useful
tools (keepout map generators, exposure time calculators, etc.)

e Open Source Science is great - we should all be doing it



Thanks!
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