

Starlight suppression technologies from the LUVOIR and HabEx reports

Dr. Rhonda Morgan

Jet Propulsion Laboratory, California Institute of Technology Acknowledgements to the LUVOIR and HabEx Design Teams

Starlight Suppression Technologies for HWO Flagship Seattle AAS meeting Splinter Session January 10, 2023

© 2023 California Institute of Technology, government sponsorship acknowledged, CL#23-0699

Pre-decisional: for discussion purposes only

External Occulters (Starshades)

Internal Occulters (Coronagraphs)

In-space high contrast imaging architectures

	HST	WFIRST	HabEx	JWST	LUVOIR-B	LUVOIR-A
Coronagrap h contrast	10 ⁻⁵	10 ⁻⁸	10 ⁻¹⁰	10-6	10 ⁻¹⁰	10 ⁻¹⁰
Starshade (26 n diameter		(26 m)	52 m			
	HST/\ 2.4m Prir On-Ax	WFIRST H mary Mirror 4 m is Design Of	HABEX Primary Mirror ff-Axis Design	JWST 6.5m Primary Mirror On-Axis Design	LUVOIR-B 8m Primary Mirror Off-Axis Design	LUVOIR-A 15m Primary Mirror On-Axis Design

LUVOIR architectures

On-axis obscuration is challenging for coronagraph

Coronagraph with 10⁻¹⁰ raw contrast

- LUVOIR-A: APLC, LUVOIR-B: VVC
- DM: 128 x 128 MEMS
- Imager: 1024 pixels, IFS: 4096 pixels
- IWA OWA: 3.5 64 I/D
- Wavelengths: 200-525, 515-1030, 1000-2000 nm

Ultra-stable segmented mirror

- Closed back ULE glass segments
- Rigid body actuated segments
- Edge sensors
- Laser metrology truss
- Vibration isolation

Baseline Architecture: coronagraph + starshade

Mission Duration	5 years (10 years consumables)
Orbit	Earth-Sun L2 Halo
Telescope Type	Off-axis three-mirror anastigmat
Primary Mirror	4-meter monolith glass-ceramic (Zerodur) substrate with AI+MgF ₂ coating
Attitude Control	Slewing: hydrazine thrusters Pointing: micro-thrusters
Launch Vehicles	Telescope: SLS Block 1-B Starshade: Falcon Heavy
Science Instruments	 Exoplanet Science Coronagraph Starshade Observatory Science: UV Spectrograph Workhorse Camera

HolbEx

Coronagraph IWA – OWA: 2.4 – 32 I/D, Vis, NIR Starshade IWA -OWA: 58 mas – 6" for 300-1000 nm IFS detector: 4096 pixels

The complementary strengths of coronagraphs and starshades

	coronagraph	starshade
Bandwidth	20%	>100%
Throughput	20-40%	~100%
Polarization	Single channel	Unaffected
IWA	2.4 λ/D	1.5 λ/D
OWA	64 λ/D	>235 λ/D
Slew time	<1 hr	~1 week
Starlight suppression	Inside telescope	In front of telescope
Strength	Search survey	High quality spectra

- Coronagraphs are agile and well-suited for search surveys
- Starshades are optimal for high quality spectra due to their smaller IWA, higher throughput, and very broad bandwidth

Telescope Technology Advances

Laser Metrology

HoibEx

Laser Metrology System: Beam launcher, ring laser, and phase meter TRL 4

Systems level solutions required for coronagraph

Large Monolith Mirror Fabrication

Microthrusters

Starshade-Only 3.2S Architecture

• No coronagraph

HoibEx

- -Telescope WFE stability tolerances relaxed 1000 times
- -Starshade provides the highest quality exoplanet spectroscopy
- -But lower yield of exo-Earths unless detected before HabEx

Active Optics On-axis Telescope

- -Corrects Static PM WFE in orbit
- -Segmented to stay within current practice and largest ULE mirrors
- -Laser MET to continuously maintain optical alignment

-Lighter (2T) & Smaller Telescope

- Light weight ULE (5cm thick) Primary Mirror
- Total launch Mass = 7.3 T, fits in Delta IV Heavy or Vulcan Centaur
- More compact (f/1.3)
- Non deployable OTA a priori scalable to 4m and above

Lower cost option

Estimated Cost Reductions	HabEx 4H	HabEx 3.2S
Smaller Telescope		-0.6 \$B
No Coronagraph		-0.4 \$B
Smaller Launch Vehicle		-0.4 \$B
Same Starshade System		
Lower Reserves		-0.4 \$B
Total Estimated Cost	6.8 \$B	5.0 \$B

HabEx Report Appendix B, Fig B.1-6

Starshade Technology Gaps

Starlight Suppression

ational Aeronautics and

Jet Propulsion Laboratory California Institute of Technology

Formation Sensing

And Control

Deployment Accuracy and Shape Stability

Instrument Technology Advances

Starlight Suppression Performance

HoibEx

HabEx Coronagraph Modeling Results

Modeling Threads to be Integrated for System Modeling

Different yield metrics reveal different sensitivities

Metrics

Bandwidth, SNR, R_s

Architecture

Observing Scenario

Prior Knowledge

- Molecular species wavelength indicated where the red edge returns to the continuum
- Relative yield is due to IWA:
 - 1.56 l/D starshade
 - 2.5 l/D coronagraph

Morgan et al AAS 2023 Modeled using EXOSIMS https://github/dsavransky/EXOSIMS

Conclusions

- Coronagraphs require a system level solution
- Coronagraph contrast AND throughput are important, as robustness to aberrations and dynamics
- Inner working angle (IWA) strongly improves yield
- Size of DM sets the outer working angle (OWA)
- New possibilities
 - Scalar Vortex coronagraphs for manufacturability
 - Photonic Lanterns (could they mature in time for HWO?)
 - Incorporate EPRV
 - Multi-star wavefront control
 - Segment shape for throughput and dynamics resilience
 - Detailed study of UV and NIR coronagraphs
 - Evaluate NIR and UV science requirements

16

ExEP Segmented Design Activity 2016 Report

https://exoplanets.nasa.gov/exep/technology/tech_colloquium/

BACKUP

17

HabEx 4 Instruments

UV Imager & Spectrograph (UVS) Section 6.5

Hobex

Starshade Instrument (SSI)

Imaging Channel 115 - 370 nm		UV Channel	200 to 450 nm Imager + Grism at R=7	
Spectroscopy Channel	 115 - 320 nm with R=500 to 60,000 320 - 370 nm with R=500 or 1,000 	Visible Channel	450 - 975 nm Imager + IFS with R=140	
Field of View	 3 x 3 arcmin² Micro-shutter Array for MOS: 	tre Near Infrared Channel	975 - 1800 nm Imager + IFS with R=40	
Effective	2 x 2 array of 171 x 365 apertures	 High Contrast Region 	IWA = 58 mas (from 300 to 1000 nm) OWA = 6" (Imager) / 1" (IFS)	
Collecting Area		Raw Contrast	10 ⁻¹⁰ at IWA over 107% Bandwidth (nominally 300 to 1000 nm)	
Baseline	Vector Vortex (Charge 6)			
Visible Channels (1 per Polarization)	450 - 975 nm Imager + IFS with R=140	Visible Channel	370 - 975 nm Imager + Grism with R=1000	
Near Infrared Channel	975 - 1800 nm Imager + IFS with R=40)b: Noar Infrared	975 1800 pm	
High Contrast Region	IWA = 2.4 λ /D (62 mas at 0.5 μ m) ^{FGS: Fine Gu} OWA = 32 λ /D (830 mas at 0.5 μ m)	Channel	Imager + Grism with R=1000	
Raw Contrast	2.5 x 10 ⁻¹⁰ at IWA over 20% Bandwidth 40x better than WFIRST CGI	Field of View	 3 x 3 arcmin² Micro-shutter Array for MOS: 2 x 2 array of 171 x 365 apertures 	
Features	Active Low Order Wavefront Sensing & Control with two 64x64 DMs			

Workhorse Camera & Spectrograph (HWC)

Architectures vs Science, Cost and Technical Maturity

Hoidex

- STDT's preferred architecture is 4H
- Red does not mean "no science"
- At a given size, Hybrid architectures maximize exoplanet science
- C-only
 - no UV exoplanet observations
 - Vast majority of planets with orbits
 - Reduced spectroscopy
- S-only:
 - High Quality spectra
 - Limited # of orbits measured

- Observatory Science is primarily a function of telescope size
- Architectures 4H (4C) and 3.2S studied in detail and "TRACEable"

Coronagraph Accommodations and Trades

f/1.5 primary

 \bigcirc

• Selecting among different coronagraph masks:

Selecting from different VVC •

HoipEx

Aberration	Ind	lices	Allowable RMS wavefront error (nm) per mode				
	п	т	charge 4	charge 6	charge 8	charge 10	
Tip-tilt	1	±1	1.1	6.1	16	29	
Defocus	2	0	0.8	4.6	13	32	
Astigmatism	2	±2	0.0068	1.1	0.92	4.8	
Coma	3	±1	0.0064	0.69	0.84	5.4	
Spherical	4	0	0.0049	0.53	0.75	7	
Trefoil	3	±3	0.0073	0.0064	0.59	0.68	
Exo-Earths Spectra			9	8	5	3	

4H OTA Specifications are within current State of Practice

Aperture Diameter		4.0 meters		
Diffraction Limited Wavelength		400 nm		
Total Wavefront Error		30 nm rms (wavefront)		
Total Primary Mirror Figure Error		5.6 nm rms (surface)		
	Low Spatial SFE (<30 cycles/dia)		4.3 nm rms	
	Mid Spatial SFE (30 to 100 cycles/dia)		3.3 nm rms	
	High Spatial SFE (>100 cycles/dia)		1.4 nm rms	
	Roughness		0.3 nm rms	
Line of Sight Stability (Jitter)		< 0.7 milli-arcseconds		
Wavefront Error Stability		1 to 250 pm (spatial frequency dependent)		
Spectral Range		115 nm to 1700 nm		

Hoipex

Specification	Predicted Margin	Enabling Design Elements
LOS Mechanical Jitter	20X	Telescope Structure Stiffness
		Low-Noise Micro-Thrusters
LOS Thermal Drift	3.5X	Laser Metrology System
Diffraction-Limited	1X	Demonstrated Mirror Fabrication Capability
Transmitted Wavefront		Laser Metrology System for Alignment
Wavefront Stability	4X	Telescope Structure Stiffness
-		PM Substrate Stiffness, CTE and Thermal Mass
		Active Thermal Control, Low-Noise Micro-Thrusters

Hoibex

Verifying the HabEx Starshade: Modeling Results

Parameter	Requirement	Expected Performance	Margin
Observational band	0.30–1.7 µm	0.20–1.80 µm	Met by design
I\A/A	≤64 mas (0.87 µm)	57 mas (0.87 μm)	12% (0.87 µm)
	≤80 mas (1.0 µm)	58 mas (1.0 µm)	38% (1.0 µm)
Raw contrast	≤1.0 × 10 ⁻¹⁰	6.0 × 10 ⁻¹¹	67%
Raw contrast stability	≤2.0 × 10 ⁻¹¹	1.0 × 10 ⁻¹¹	100%
Pointing control	≤1°	<<1°	Met by design
Solar edge scatter	V > 25 mag/arcsec ²	V > 25 mag/arcsec ²	Met by design
Sunlight leakage	>32 V _{mag}	>32 V _{mag}	Met by design
Micrometeoroid holes	≤500 ppm	5 ppm	9900%
Petal position (manufacture)	≤±600 µm	±340 μm	76%
Petal shape (manufacture)	≤±140 µm	±80 μm	75%
Petal position (thermal)	≤±400 µm	±62 μm	545%
Petal shape (thermal)	≤±160 µm	±50 μm	220%

Transmission Curves Coronagraph and Starshade IFS

HolbEx

Space Administration Jet Propulsion Laboratory California Institute of Technology

National Aeronautics and

S5: Closing Starshade Technology Gaps

https://exoplanets.nasa.gov/exep/technology/starshade/

Completed by FY22

Starlight Suppression

Contrast NB 1A

Petal

5A

Petal

6A

Scattered Sunlight

Contrast BB Modeling Validation

2

7C

Formation Flying

Shape Accuracy

Shape Stability

Inner Disk (thermal) 8A

Complete by FY24

Petal

6B

Inner Disk 8B

What is Integrated Modeling (IM) ?

- IM refers to the pipeline of engineering model and analyses required to verify observatory performance based on Systems Error Budget (EB) Metrics
- IM provides inputs as estimates into Systems Error Budget allocations and Science yield for Architecture Trades
- Typical IM Disciplines in the pipeline:
 - Thermal, structures, dynamics, attitude control, optics with wavefront sensing and control, straylight, coronagraph models
- Typical Error Budget Metrics computed with IM
 - WFE, WFE stability (thermal drift & jitter), Pointing stability, Alignments, PSF, Contrast
- Note: Science Yield models could also be integrated into the IM pipeline