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Wish List & Science Drivers

Deeper Contrast (raw andcalibrated)
Higher throughput

- Higher exoplanet SNR images and spectra, access to lower mass planets
Smaller IWA

— Larger number of planets

— Extend spectroscopy to NIR

— Access planet around K (&M ?) type stars
Larger OWA

— Some of the best targets will be planets at large angular separation
Wider spectral range (ideally simultaneously)

— NUV highly sensitive to atmospheres

— NIR rich in molecular species
High spectral resolution spectroscopy

- X-correlation with templates for higher detection sensitivity

- Velocity resolution: measure instantaneous orbital speed, planet rotation
Spectro-astrometry (of planet)

— Orbital motion, moons
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Key Enabling Technologies

Photon-counting
Detectors

CCDs & EMCCDs .
Superconducting

nanowire single-
qCMOS photon detector
HgCdTe avalanche
photodiode array
detectors

MKIDS

Optical
Manufacturing

Large telescope optics

Coronagraph masks

Deformable mirrors

Microlenses, optical fibers



Wavefront Control Algorithms

Predictive Control, Sensor
Fusion
-~ Improve WFS sensitivity
— Improve WFS
reliability/completeness

Continuous WFS/C without
DM probing

- Full duty cycle

- Self-calibration

Linear Dark Field Control



Conventional AO would have control matrix
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Self-Calibration
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Wavefront control
Challenges: Relationship between WFS and DH needs to be very stable.
... maybe a device realizing both functions could be built ?



Early demonstration: 5.5x contrast gain

1550nm, 25nm BW, Lyot Coronagraph, 7 kHz frame rate
UNCALIBRATED CALIBRATED




Why is Post-processing calibration fundamentally superior
to active control ?

Wavefront control
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Current coronagraph options deliver IWA
that is ~ 2x to 3x larger than the
fundamental limit.

Gap is largest for centrally obscured
apertures.

2.5x factor in IWA means ...

~16x in volume (accessible targets)
2.5x in red-edge wavelength limit
Access to planets around cooler stars



Can this be built ?
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Key advantages:

Photonic Nulling
Access to very small

Integrated-photonics concept A separation (better than
for high-contrast imaging e sorting is .~ | coronagraphy)

performed via an energy-resolving
MKIDS detector.

High sensitivity
wavefront sensing

This injects the light into integrated within Ch|p

a nulling chip.

A telescope pupil is injected
into a pupil-remapping chip
via an on-chip 3-D-printed
microlens array.

. Spectroscopy at output
The output is sp.ectrally dispersed
at high spectral resolution via an
------ - ' ol arrayed-waveguide-grating-based
‘ photonic spectrograph.

&=~

On-chip active modulation
allows the null to be carefully
tracked by dynamically
adjusting optical path length.

GRAVITY photonic beam combiner
(Perraut et al. 2018)

Illustration by Phil Saunders

“Astrophotonics: The Rise of Integrated Photonics in Astronomy”, Norris & Bland-Hawthorn.Optics and Photonics News (2019)
https.//www.osa-opn.org/home/articles/volume 30/may_2019/features/astrophotonics the rise of integrated photonics_in/
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GLINT photonic nuller testbed
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aSchematics of the pupil remapper of the chip, coherently transforming the 2D configuration of the inputs (on the left) matching the desired pupil
sampling pattern into a 1D configuration (on the right). The waveguide paths have been optimised to match their optical path lengths despite their different
routes. The green waveguide is associated with beam 1, orange with beam 2, red with beam 3 and blue with beam 4. b Perspective view of the beam
combiner of the chip. ¢ Plan view in which light propagates from the 4 inputs at the bottom towards the top, encountering 4-way splitters and codirectional
couplers. d Right-side view of the chip showing the locations of the inputs and the outputs. The inputs, outputs, splitters and couplers are indicated on the
(b-d) diagrams. The axis scale proportions in all the schematics differ for clarity in the drawing.

“Scalable photonic-based nulling interferometry with the dispersed
multi-baseline GLINT instrument”

Martinod, Norris, Tuthill...Guyon et al.

Nature Communications (2021)

link: https.//www.nature.comv/articles/s41467-021-22769-x



https://www.nature.com/articles/s41467-021-22769-x

Photonic nuller raw data
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“Scalable photonic-based nulling interferometry with the dispersed
multi-baseline GLINT instrument”

Martinod, Norris, Tuthill...Guyon et al.

Nature Communications (2021)

link: https.//www.nature.com/articles/s41467-021-22769-x
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https://www.nature.com/articles/s41467-021-22769-x
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CONCLUSIONS

* ~2x gain in IWA may be possible by coronagraph design

* Advances in WFS/C can increase contrast, efficiency, and sensitivity to
WF aberrations

« Self-calibration of science data from WFS telemetry can remove speckle
noise

An integrated-on-a-chip photonic nulling instrument could simultaneously provide

these benefits.

Photonic nulling approach is well-suited for small angular separations, but does
not scale well with fied of view.
— Optimal coronagraph approach is target-dependent
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