Exoplanet Blog

Alien vs. Editor

November 8, 2017, 12:07 PST

'All these worlds are yours'

Exoplanets transform our view of the galaxy — and ourselves

Pat Brennan

Artist's rendering of potentially habitable exoplanets, plus Earth (top right) and Mars (top center). Image credit: PHL@UPR Arecibo (phl.upr.edu), ESA/Hubble, NASA.

Artist's rendering of potentially habitable exoplanets, plus Earth (top right) and Mars (top center). Image credit: PHL@UPR Arecibo (phl.upr.edu), ESA/Hubble, NASA.

Look deeply enough into the night sky, and you’ll soon see how radically the universe has changed.

You might have to borrow some space-based spyglasses – NASA’s Kepler, Spitzer or Hubble space telescopes – to peer into the cosmic depths and watch the faint shadows of planets cross the faces of their stars. Or measure the stars’ wobble, the gravitational tugs of orbiting planets. But as your eyes adjust, the new reality becomes crystal clear. For the first time since we began huddling around campfires, weaving scattered stars into pictures and stories, we know with certainty that we belong to a galaxy packed with neighboring worlds – whole systems of stars and planets far beyond, and vastly different from, our own solar system.

TRAPPIST-1 system
TRAPPIST-1, an ultra-cool dwarf star, is orbited closely by seven roughly Earth-sized worlds. Image credit: NASA/JPL-Caltech.

This is not your parents’ universe. You can take a planet-hopping vacation across the seven Earth-sized worlds of the system known as TRAPPIST-1, for instance, just 40 light-years away. A somewhat longer trip, around 200 light-years, will take you to Kepler-16b, a planet orbiting two stars. The two suns in its sky make it a real-life Tatooine, straight out of “Star Wars.”

Or how about pitch-black WASP-12b, some 1,400 light-years away, orbiting its star so closely it’s being distorted into an egg shape as it is gradually pulled apart?

[Earth-sized planets: the newest, weirdest generation]

51 Pegasi b
Illustration of 51 Pegasi b, a "hot Jupiter" that began a gold rush of exoplanet discovery.

The count of confirmed exoplanets – planets around other stars – has passed 3,500 since 1995, when the detection of 51 Pegasi b, a roasting giant in a close orbit around a sun-like star, rang in the era of fast-paced exoplanet discovery. Dozens, then hundreds, then thousands began to jump out of telescope data.

The Kepler space telescope reeled in the largest haul, providing a census of planet types and sizes. A planet as light as Styrofoam, another that could be raining glass. Earth-sized worlds by the bushel, but also oddly sized “super Earths” and “sub-Neptunes,” planets larger than Earth but smaller than Neptune. These are the most common types of planets, though we know next to nothing about them: In our solar system they are conspicuously absent.

Reaction wheel failures ended the Kepler telescope’s primary mission in 2013 after four years of exoplanet observation. Some clever commands from ground-based engineers allowed it to continue functioning as K2, an extended mission mapping new star fields that lie within the plane of Earth’s orbit around the Sun. Its observation times are now shorter, but its ability to discover new exoplanets remains intact.

Artists' renderings of future space telescopes that will search for exoplanets: TESS, the James Webb Space Telescope, and WFIRST.

The K2 mission is, in fact, preparing the way ahead for two new, state-of-the-art planet hunters to be launched in the next two years. The Transiting Exoplanet Survey Satellite (TESS) and the James Webb Space Telescope will take their cues from K2, which is identifying interesting exoplanets that the new kids on the block can investigate in greater depth. The Webb telescope will capture the light from some of these planets, with the goal of determining which gases are present in their atmospheres.

"All these worlds are yours. . ."
- Arthur C. Clarke, "2010: Odyssey Two"

The age of direct imaging – actual pictures – of exoplanets is upon us, even if the first images are no bigger than a pixel. And the techniques pioneered by the Webb telescope could one day allow us to identify oxygen, carbon dioxide and methane in the skies of some far-off, blue and white marble. In other words, signs of life – and just maybe, another Earth-like planet.

For now we can take these journeys to exotic exoplanets only in our imaginations, though helped along by the visions of space artists. Their visualizations, based on known data, are so sharp they look like photographs. Using exoplanet virtual reality and your cell phone, you can stand on the surface of an orange-tinted world, and look back toward Earth through its alien skies.

[An image is worth a thousand worlds]

Welcome to our new exoplanet blog, part of NASA’s Exoplanet Exploration program. Hitch a ride with us as we take interstellar tours, discover new planets, and press ahead in the search for life. A brand-new universe is waiting.

An illustration of the surface of an exoplanet, TRAPPIST-1f, by Tim Pyle of Caltech's IPAC center.

October 4, 2017, 11:30 PDT

Planet Nine

The super Earth that came home for dinner

Pat Brennan

An artist’s illustration of a possible ninth planet in our solar system, hovering at the edge of our solar system. Neptune’s orbit is show as a bright ring around the Sun. Credit: ESO/Tom Ruen/nagualdesign

An artist’s illustration of a possible ninth planet in our solar system, hovering at the edge of our solar system. Neptune’s orbit is show as a bright ring around the Sun. Credit: ESO/Tom Ruen/nagualdesign

It might be lingering bashfully on the icy outer edges of our solar system, hiding in the dark, but subtly pulling strings behind the scenes: stretching out the orbits of distant bodies, perhaps even tilting the entire solar system to one side.

If a planet is there, it’s extremely distant and will stay that way (with no chance – in case you’re wondering – of ever colliding with Earth, or bringing “days of darkness”). It is a possible Planet Nine, a world perhaps 10 times the mass of Earth and 20 times farther from the sun than Neptune. The signs so far are indirect, mainly its gravitational footprints, but that adds up to a compelling case nonetheless.

One of its most dedicated trackers, in fact, says it is now harder to imagine our solar system without a Planet Nine than with one.

“There are now five different lines of observational evidence pointing to the existence of Planet Nine,” said Konstantin Batygin, a planetary astrophysicist at Caltech whose team may be closing in. “If you were to remove this explanation, and imagine Planet Nine does not exist, then you generate more problems than you solve. All of a sudden, you have five different puzzles, and you must come up with five different theories to explain them.”

Batygin and his co-author, Caltech astronomer Mike Brown, described the first three breadcrumbs on Planet Nine’s trail in a January 2016 paper, published in the Astronomical Journal. Six known objects in the distant Kuiper Belt, a region of icy bodies stretching from Neptune outward toward interstellar space, all have elliptical orbits pointing in the same direction. That would be unlikely – and suspicious – enough. But these orbits also are tilted the same way, about 30 degrees “downward” compared to the pancake-like plane within which the planets orbit the sun.

Planet Nine Caltech authors
Caltech professor Mike Brown and assistant professor Konstanin Batygin have been working together to investigate Planet Nine. Credit: Caltech/Lance Hayashida

Breadcrumb number three: Computer simulations of the solar system with Planet Nine included show that there should be more objects tilted with respect to the solar plane. In fact, the tilt would be on the order of 90 degrees, as if the plane of the solar system and these objects formed an “X” when viewed edge-on. Sure enough, Brown realized that five such objects already known to astronomers fill the bill.

Two more clues emerged after the original paper. A second article from the team, this time led by Batygin’s graduate student, Elizabeth Bailey, showed that Planet Nine could have tilted the planets of our solar system during the last 4.5 billion years. This could explain a longstanding mystery: Why is the plane in which the planets orbit tilted about 6 degrees compared to the sun's equator?

“Over long periods of time, Planet Nine will make the entire solar-system plane precess or wobble, just like a top on a table,” Batygin said.

The last telltale sign of Planet Nine’s presence involves the solar system’s contrarians: objects from the Kuiper Belt that orbit in the opposite direction from everything else in the solar system. Planet Nine’s orbital influence would explain why these bodies from the distant Kuiper Belt end up “polluting” the inner Kuiper Belt.

“No other model can explain the weirdness of these high-inclination orbits,” Batygin said. “It turns out that Planet Nine provides a natural avenue for their generation. These things have been twisted out of the solar system plane with help from Planet Nine and then scattered inward by Neptune.”

Planet nine orbits
The six most distant known objects in the solar system with orbits exclusively beyond Neptune (magenta) all mysteriously line up in a single direction. Moreover, when viewed in 3-D, the orbits of all these icy little objects are tilted in the same direction, away from the plane of the solar system. Credit: JPL-Caltech/R. Hurt

The remaining step is to find Planet Nine itself. Batygin and Brown are using the Subaru Telescope in Hawaii’s Mauna Kea Observatory to try to do just that. The instrument is the “best tool” for picking out dim, extremely distant objects lost in huge swaths of sky, Batygin said.

But where did Planet Nine come from? Batygin says he spends little time ruminating on its origin – whether it is a fugitive from our own solar system or, just maybe, a wandering rogue planet captured by the sun’s gravity.

“I think Planet Nine’s detection will tell us something about its origin,” he said.

Other scientists offer a different possible explanation for the Planet Nine evidence cited by Batygin. A recent analysis based on a sky mapping project called the Outer Solar System Origins Survey, which discovered more than 800 new “trans-Neptunian objects,” or TNOs, suggests that the evidence also could be consistent with a random distribution of such objects. Still, the analysis, from a team led by Cory Shankman of the University of Victoria, could not rule out Planet Nine.

If Planet Nine is found, it will be a homecoming of sorts, or at least a family reunion. Over the past 20 years, surveys of planets around other stars in our galaxy have found the most common types to be “super Earths” and their somewhat larger cousins – bigger than Earth but smaller than Neptune.

Yet these common, garden-variety planets are conspicuously absent from our solar system. Weighing in at roughly 10 times Earth’s mass, the proposed Planet Nine would make a good fit.

Planet Nine could turn out to be our missing super Earth.